
Geophysical Journal International
Geophys. J. Int. (2012) 190, 1243–1256 doi: 10.1111/j.1365-246X.2012.05554.x

G
JI

S
ei

sm
ol

og
y

Uncertainty estimations for seismic source inversions

Zacharie Duputel,1 Luis Rivera,2 Yukitoshi Fukahata3 and Hiroo Kanamori1
1Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA. E-mail: zacharie@gps.caltech.edu
2Institut de Physique du Globe de Strasbourg, IPGS - UMR 7516, CNRS and Université de Strasbourg (EOST), France
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S U M M A R Y
Source inversion is a widely used practice in seismology. Magnitudes, moment tensors, slip
distributions are now routinely calculated and disseminated whenever an earthquake occurs.
The accuracy of such models depends on many aspects like the event magnitude, the data
coverage and the data quality (instrument response, isolation, timing, etc.). Here, like in any
observational problem, the error estimation should be part of the solution. It is however very
rare to find a source inversion algorithm which includes realistic error analyses, and the
solutions are often given without any estimates of uncertainties. Our goal here is to stress
the importance of such estimation and to explore different techniques aimed at achieving
such analyses. In this perspective, we use the W phase source inversion algorithm recently
developed to provide fast CMT estimations for large earthquakes. We focus in particular on the
linear-inverse problem of estimating the moment tensor components at a given source location.
We assume that the initial probability densities can be modelled by Gaussian distributions.
Formally, we can separate two sources of error which generally contribute to the model
parameter uncertainties. The first source of uncertainty is the error introduced by the more
or less imperfect data. This is carried by the covariance matrix for the data (Cd). The second
source of uncertainty, often overlooked, is associated with modelling error or mismodelling.
This is represented by the covariance matrix on the theory, CT. Among the different sources
of mismodelling, we focus here on the modelling error associated with the mislocation of
the centroid position. Both Cd and CT describe probability densities in the data space and
it is well known that it is in fact CD = Cd + CT that should be included into the error
propagation process. In source inversion problems, like in many other fields of geophysics,
the data covariance (CD) is often considered as diagonal or even proportional to the identity
matrix. In this work, we demonstrate the importance of using a more realistic form for CD.
If we incorporate accurate covariance components during the inversion process, it refines the
posterior error estimates but also improves the solution itself. We discuss these issues using
several synthetic tests and by applying the W phase source inversion algorithm to several large
earthquakes such as the recent 2011 Tohoku-oki earthquake.

Key words: Time-series analysis; Inverse theory; Earthquake source observations; Surface
waves and free oscillations.

1 I N T RO D U C T I O N

The estimation of the source parameters is a first step to understand
the rupture process of large earthquakes. It is also of great interest
to study the relationship between the earthquake and its tectonic
and geodynamic environment. The inverse problem can be formu-
lated and solved in various ways depending on the nature of data
(e.g. seismological, geodetic), the observation scale (e.g. regional,
teleseismic) and the time at which it is performed after the event
origin time (i.e. ranging from real time to the study of historical
earthquakes). The estimated source models can then be used as in-

puts of various algorithms such as Shakemap computation (Wald
et al. 2005), tsunami modelling (Satake 2007) or Coulomb stress
transfer calculation (King 2007).

Despite their importance, these source inversion results are of-
ten lacking of uncertainty estimations and the inversion algorithms
themselves generally do not include realistic error analyses. The
importance of having such estimates has been earlier stressed by
Dziewonski et al. (1981) and significant efforts have been made in
geodetic finite fault inversion studies (Yabuki & Matsu’ura 1992;
Fukahata & Wright 2008; Sudhaus & Jónsson 2009). It is how-
ever rare to find a source inversion solution based on seismological
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1244 Z. Duputel et al.

data including such error analysis (e.g. Ide et al. 1996; Yagi &
Fukahata 2011). Our goal here is to discuss how to take errors
explicitly into account in seismic source inversion problems.

In this perspective, we use the W phase source inversion algo-
rithm developed by Kanamori & Rivera (2008). As discussed by
Duputel et al. (2012), this algorithm provides fast and robust cen-
troid moment tensor estimations for moderate to large earthquakes.
Besides the standard application, its simplicity and versatility make
it suitable for diverse applications. We incorporate a more formal
linearized error analysis into the algorithm and discuss the above
by applying it to several large earthquakes.

2 F O R M U L AT I O N O F T H E S O U RC E
I N V E R S I O N P RO B L E M

We consider here the simple linear case of a point source inversion
at a given centroid location. The elements available to solve this
problem are (1) the observables d (the data dobs corresponding to
measurements of d) and (2) the theory d = Gm which relates the
observables d to a model m using a linear operator G. In case of W
phase inversion, m contains the moment tensor elements, dobs are
the displacement traces and G are the so called Green’s functions.

The source inversion problem is formulated here by using the
least-squares criterion using a Bayesian formulation as proposed
for example, by Tarantola & Valette (1982) or Yabuki & Matsu’ura
(1992). We assume that the initial probability densities can be mod-
elled by Gaussian distributions. As a consequence of the forward
problem being linear, the posterior errors on the model parameters
are ensured to be Gaussian. Moreover, the covariance matrices play
a central role in the formulation of uncertainties and the inversion
results will strongly depend on the information they provide.

In our problem, we can separate two sources of error. On one
side we have the uncertainty introduced by imperfect data. This
information is provided by the probability density ρD(d) which
is defined by the actual observations dobs and the covariance
matrix Cd

ρD(d) = ((2π )N det Cd)−1/2 exp
(− 1

2 (d − dobs)t C−1
d (d − dobs)

)
,

(1)

where N is the total number of data samples.
The second source of error, often ignored, is associated with

the modelling uncertainties or mismodelling. We assume that for a
given source model m, instead of predicting exactly the data d, we
have a fuzzy theory described by a conditional probability density

ρT(d|m) = ((2π )N det CT)−1/2 exp
(− 1

2 (d − Gm)t C−1
T (d − Gm)

)
.

(2)

associated with a covariance matrix CT. The conditional probability
density ρT(d|m)gives us the probability of obtaining the data vec-
tor d given the model m. ρT(d|m) is introduced, for example, by
Tarantola & Valette (1982) and Yagi & Fukahata (2008).

Following Tarantola & Valette (1982) and Tarantola (2005), if we
take the conjunction of the two states of information described in
eqs (1)–(2) and integrate over the data space, we obtain a marginal
probability density σ M(m) which is the solution of the inverse prob-
lem describing a posteriori information in the model space

σM(m) = k exp
(− 1

2 (Gm − dobs)t C−1
D (Gm − dobs)

)
, (3)

where k is a normalization factor and

CD = CT + Cd. (4)

This shows that, under the Gaussian assumption, the mismodelling
and observational uncertainties are combined by simply adding
the corresponding covariance matrices. σ M(m) in eq. (3) can be
rewritten explicitly as a Gaussian distribution (Tarantola 2005)

σM(m) = ((2π )N det C̃M)−1/2 exp
(− 1

2 (m − m̃)t C̃−1
M (m − m̃)

)
,

(5)

where m̃ is the point at the maximum of the posterior Gaussian
σ M(m) and C̃M is the posterior covariance matrix

m̃ = C̃MGt C−1
D dobs, C̃M = (Gt C−1

D G)−1. (6)

Eq. (6) is a particular case of the result found by Jackson (1979)
and Tarantola (2005) without prior information on the model
parameters.

In source inversion problems, like in many other field of geo-
physics, a common assumption is to consider the data covariance
(CD) as diagonal or even proportional to the identity matrix (I). In
this work, we demonstrate the importance of using a more realistic
form for CD. In this paper, we focus on how to estimate the obser-
vational covariance (Cd) and the mismodelling covariance (CT) and
discuss its implications for the solution of the inverse problem.

3 O B S E RVAT I O NA L E R RO R S

In the case of seismological observations at long period, the data
uncertainty is mostly related to the background seismic noise which
steadily grows at long period. As indicated by Sorrells (1971),
the long period noise is mainly related to atmospheric pressure
disturbances. The noise level varies depending on many factors such
as the station location and the quality of the instrument isolation.
It depends also on the orientation of the record since the horizontal
components are often noisier than the vertical ones.

To assess the effect of long period noise on W phase solutions,
one possibility is to add actual noise to synthetic waveforms and to
make an inversion using the noisy synthetic data set. For this pur-
pose, we use the following procedure: the synthetic seismograms
are first computed by normal mode summation and are convolved
with the instrument response at each station. We then add raw noise
data to the resulting signals. We use the continuous noise records of
networks II, IC, IU and G which have been extracted using the In-
corporated Research Institutions for Seismology Data Management
Center (IRIS DMC). Considering the network geometry and focal
mechanism depicted in Fig. 1, we computed the noisy synthetic
data sets corresponding to different moment magnitudes (i.e. Mw =
{6.0, 7.0, 8.0}). The moment rate function is assumed here to be an
isosceles triangle with a half duration given by

hc = 1.05 × 10−8 × M1/3
0 , (7)

where M0 is in dyn-cm and hc in seconds. This scaling law is
obtained empirically by fitting the scalar moment M0 to hc for
all Mw ≥ 6.0 in the Global CMT (GCMT) catalogue since 2003
(Ekström et al. 2005). The noisy synthetic data set thus obtained is
then used as input of the W phase algorithm.

In the standard W phase centroid moment tensor (WCMT) algo-
rithm, we assume that Cd = σ 2I where I is the identity matrix and
σ is an estimate of the data error. As shown in Fig. 2, if we filter
the data at very long period using a fixed 1–5 mHz passband, the
signal to noise ratio clearly decreases as the event gets smaller and
the match between the WCMT solution and the actual source model
gets worse accordingly. As illustrated in Fig. 3, to improve the W
phase solutions for smaller events, one possibility is to increase
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Uncertainty estimations for source inversions 1245

Figure 1. Source-station geometry assumed for the synthetic experiment.
The star indicates the centroid location and the blue triangles indicate the
station locations. The focal mechanism used to compute the synthetics is
shown in green.

the signal-to-noise ratio by changing the frequency passband and
by performing an efficient data screening to reject the excessively
noisy stations. Although this approach is robust and provides very
good results at different scales (regional and teleseismic) in real-

time or in post-mortem studies (Hayes et al. 2009; Duputel et al.
2012), it has two main disadvantages. The first one is that it needs
a preliminary magnitude to choose the frequency passband used
to filter the data. The second is that it doesn’t provide accurate er-
ror estimates on the source model parameters. This is illustrated in
Fig. 4 which shows the posterior uncertainty obtained if we assume
a large noise level of 70 per cent between 1 and 5 mHz in the case
of the Mw = 7.0 event presented in Fig. 2(b) (therefore σ = 0.7 ×
‖d‖ ≈ 0.01 mm). The error estimates of the model parameters and
the correlation between them are presented in Fig. 4(b) where the
uncertainty is indicated by showing the nodal planes corresponding
to a population of 1000 source models drawn from the posterior
probability density given in eq. (5). Although σ ≈ 0.01 mm clearly
overestimates the noise level on the data traces (see Fig. 2b), we
note that the posterior uncertainty is clearly underestimated since
the actual model does not fall within the error bars.

We can improve the solution by taking into account the data
uncertainty for each station instead of assuming Cd = σ 2I. This ap-
proach should allow us to improve the solution and posterior error
estimates while using the complete data set and a fixed frequency
band (no preliminary magnitude needed). As a first guess, we can
consider a diagonal Cd whose elements correspond to a measure-
ment of the noise level σ n

d at each station n

(Cd
n)i j = (

σ n
d

)2
δi j . (8)

In this study, σ n
d is estimated by measuring the pre-event noise

level. The results obtained by considering this diagonal Cd are
shown in Fig. 5 in the case of the Mw = 7.0 event presented in
Fig. 2(b) after a bandpass filtering with the 1–5 mHz passband. The
solution in Fig. 5(b) obtained by considering the diagonal Cd in
eq. (8) shows a better match to the actual model than the solution

(a)

WCMTinversion

1-5mHz, 74 channels

Mw=6.99

Actual model

Mw=6.0

(b)

WCMTinversion

1-5mHz, 74 channels

Mw=7.02

Actual model

Mw=7.00

(c)

WCMTinversion

1−5 mHz, 74 channels

Mw=8.00

Actual model

Mw=8.00

Figure 2. Synthetic experiment using a fixed 1–5 mHz passband. We calculated three noisy synthetic data sets corresponding to different event magnitudes:
(a) Mw = 6.0, (b) Mw = 7.0 and (c) Mw = 8.0. The noisy traces are obtained by adding ambient seismic noise to synthetic seismograms which are calculated
for the focal mechanism indicated in green. The W phase CMT (WCMT) solution obtained for each data set after bandpass filtering in the 1–5 mHz passband is
shown in red. Examples of noisy synthetic traces (black lines) and the corresponding noise free synthetics (green lines) are presented. The noise free synthetics
have been slightly shifted up to distinguish the two waveforms. For the Mw = 8.0 earthquake, noisy traces are not much different from pure synthetics for a
majority of stations. For smaller events, the data is clearly contaminated by the long period noise and the WCMT solutions are significantly different from the
actual model.
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1246 Z. Duputel et al.

Figure 3. Synthetic experiment using a magnitude dependent frequency passband and a data screening. We calculated three noisy synthetic data sets
corresponding to different event magnitudes: (a) Mw = 6.0, (b) Mw = 7.0 and (c) Mw = 8.0. The noisy traces are obtained by adding ambient seismic noise
to synthetic seismograms which are calculated for the focal mechanism indicated in green. For each data set, the W phase CMT (WCMT) solution obtained
after bandpass filtering and data screening is shown in red. The passband is shifted toward higher frequencies for smaller events to reduce the long period
noise contamination. A data screening is performed to reject the noisy stations from the data set. Examples of noisy synthetic traces (black lines) and the
corresponding noise free synthetics (green lines) are presented. The noise free synthetics have been slightly shifted up to distinguish the two waveforms. The
WCMT solutions are very similar to actual source models. Note however that by using a high frequency bandpass for small events (i.e. a 7–20 mHz passband
for Mw ≤ 6.0), we are moving away from the standard W phase inversion since the effect of shallow heterogeneities may become non-negligible when using
actual data filtered at such short periods.

Figure 4. Results of the WCMT inversion with the assumption that Cd =
σ 2I where σ is taken simply as σ = 0.70 ∗ ‖d‖ ≈ 0.1 mm in the case of
the Mw = 7.0 event presented in Fig. 2(b). We show in (a) the WCMT
solution and the actual source model for comparison. The posterior uncer-
tainty associated with this solution is presented in (b). We superimposed
on the WCMT mechanism a population of 1000 nodal planes drawn from
the posterior probability density. The WCMT significantly differs from the
actual solution and the posterior errors on the moment tensor elements are
obviously underestimated.

in Fig. 4 obtained with Cd = σ 2I. This is not surprising since
using eq. (8) is equivalent to weight the data as a function of noise
level at each station. However, as observed in Fig. 4(b), there is an
obvious underestimation of uncertainty in Fig. 5(c). Because the
background seismic noise is the only source of error introduced in
this synthetic experiment, some information is clearly missing in
the present formulation of Cd given by eq. (8).

4 DATA OV E R S A M P L I N G : T H E
I M P O RTA N C E O F C OVA R I A N C E
O F F - D I A G O NA L T E R M S

As discussed in the previous section, the diagonal form of Cd in
eq. (8) leads to an obvious under-estimation of posterior uncertain-
ties. To identify what is missing in this formulation, we can take a
closer look at the data. Fig. 6 shows the BFO vertical displacement
seismograms which have been recorded during the 2004 Sumatra-
Andaman Islands earthquake. The frequency range used here is
the 1–5 mHz passband which is used for the determination of the
source mechanism of large events using W phase waveforms. Since
the WCMT algorithm uses ‘LH’ channels sampled at 1 Hz, the data
traces are clearly oversampled. This is demonstrated on Fig. 6 by
drawing red dots every 10 samples. The data points are strongly
correlated and, under such circumstances, we cannot neglect the in-
terdependence of observational errors (Fukahata & Wright 2008).
Neglecting these correlations by assuming a diagonal Cd can seri-
ously bias the error estimates of WCMT inversions. Since we are
working at teleseismic distances, the interstation distance is large
enough to neglect any correlation due to spatial oversampling.

There are basically two different ways to address this issue. The
first approach is to significantly decimate the data so that the hy-
pothesis of independent data samples (i.e. diagonal Cd) becomes
approximately valid. However, since a battery of low pass filters
should be applied to reduce the data sampling, this will add a sig-
nificant delay which is not suited for W phase fast source inversions,
even without considering timing complications. Moreover, this first
approach results in a reduction of information originally included in
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Uncertainty estimations for source inversions 1247

Figure 5. Results of the WCMT inversion which takes into account the background noise level at each station in the case of the Mw = 7.0 event presented in
Fig. 2(b). The blue mechanism in (b) corresponds to the WCMT solution obtained by assuming a Cd whose diagonal elements are determined by measuring
the pre-event noise levels for each trace [i.e. the diagonal Cd formulated in eq. (8)]. The posterior uncertainty associated with this solution is presented in (c).
We superimposed on the WCMT mechanism a population of 1000 nodal planes drawn from the posterior probability density. For comparison, we show in
(a) the actual source model and the WCMT solution obtained using the standard W phase algorithm in which we assume Cd = I (cf. Fig. 2b). Although the
WCMT solution in (b) is closer to the actual mechanism than the WCMT solution in (a), the posterior errors on the moment tensor elements are obviously
underestimated.

Figure 6. W phase displacement recorded on LHZ BFO channel during the
2004 Sumatra-Andaman Islands earthquake. After removal of instrument
response, the signal is bandpass filtered using a 1–5 mHz passband. Red
circles are plotted every 10 samples (i.e. every 10 s) to illustrate the data
oversampling.

the data and is not desirable in source inversion problem. The other
possibility is to drop the hypothesis of a diagonal Cd by including
the data correlation in the construction of Cd, which leads to non-
diagonal terms. This approach is explored here by introducing a
block-diagonal Cd which is given by the following expression for a

station n:

(Cd
n)i j = (

σ n
d

)2
exp(−|�t i j |/t0), (9)

where t0 represents a characteristic correlation duration and �tij

equals the time difference between samples i and j. A similar ex-
pression is used by Tarantola & Valette (1982) and Fukahata &
Wright (2008) to take into account spatial correlation of error. In
practice, t0 in eq. (9) is chosen as the shortest period content avail-
able after filtering the data (i.e. in our case we assume t0 = 200 s).
An alternative approach to this parametric representation of the data
correlation is to estimate the covariance matrix directly from back-
ground noise data samples (as suggested by Gouveia & Scales 1998;
Sambridge 1999; Tarantola 2005). However, for the very long peri-
ods considered here, such calculation would necessitate very long
time-series to have a statistical significance.

Fig. 7 shows the results of employing eq. (9) for an inversion
based on the noisy synthetic data set generated for a Mw = 7.0
earthquake filtered with the 1–5 mHz passband (cf. Fig. 2b). As
done in Figs 4 and 5, the posterior error are indicated in Fig. 7(c)
by showing a random population of probable nodal planes. The
posterior uncertainty shown here is much more realistic than those
obtained when neglecting temporal correlations (e.g. Figs 5b or
c). Interestingly, taking into account the off-diagonal covariance
components not only enhances the posterior errors estimates but it
also improves the solution itself since we note a pretty good match
between the solution and the original model. By using oversam-
pled seismograms at long period, the information from the data is

Figure 7. Results of the WCMT inversion which takes into account (1) the background noise level at each station and (2) the oversampling of the W phase
traces in the case of the Mw = 7.0 event presented in Fig. 2(b). The blue mechanism in (b) corresponds to the WCMT solution obtained by assuming a
block-diagonal Cd as formulated in eq. (9). The posterior uncertainty associated with this solution is presented in (c). We superimposed on the WCMT
mechanism a population of 1000 nodal planes drawn from the posterior probability density. For comparison, we show in (a) the actual source model and the
WCMT solution obtained using the standard W phase algorithm in which we assume Cd = I (cf. Fig. 2b).
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1248 Z. Duputel et al.

artificially overweighted. If we perform the source inversion while
neglecting the correlation of errors in oversampled traces, a model
that excessively fits observed data would be selected. On the con-
trary, if we consider the effect of data covariance, the correlation
of errors are reasonably taken into account which avoids biased
inversion results.

5 M O D E L L I N G U N C E RTA I N T I E S

In source inversion practices, we often know that our modelling
is imperfect. Source mislocation, unmodelled finiteness, incorrect
prior fault geometry, oversimplified Earth models are among many
sources of modelling errors having a potential effect on source
inversion results. To introduce this information into the inverse
problem, one possibility is to allow for a non-deterministic theory
incorporating such fuzziness. As discussed in Section 2, this can
be done by defining a probability density ρT(d|m) describing the
theoretical relation between model parameters m and data d as well
as modelling uncertainties. In the literature, the mismodelling is
often neglected, which is roughly equivalent to assuming a delta
probability distribution

ρT(d|m) = δ(d − Gm), (10)

where δ is the Dirac delta function. Although this hypothesis can
be true in some particular cases, eq. (10) does not generally hold.
In most applications, a significant portion of the data misfit can
actually be attributed to modelling uncertainties due to inadequate
parametrization or to imperfect physical theories with (too) simplis-
tic hypotheses.

In the particular case of the WCMT inversion, the mismodelling
can be caused by the centroid mislocation, the source finiteness for
very large earthquakes (Mw ≥ 9.0, e.g. 2004 Sumatra-Andaman
Island earthquake), the source complexity (e.g. 2009 Samoa great
earthquake sequence, Beavan et al. 2010; Lay et al. 2010) or the
large amplitude disturbances caused by a preceding event (e.g. 2009
Vanuatu earthquake sequence). Among these different sources of
mismodelling, we focus here on the modelling error associated with
the mislocation of the centroid position. Another source of mismod-
elling which can be taken into account is the possibility of having
an incorrect Earth model. However, the W phase mainly propagates
through the mantle and thus barely affected by shallow crustal struc-
tures. As discussed by Duputel et al. (2012), the effect of directivity
due to the source finiteness is visible on the W phase recordings for
Mw > 9.0 earthquakes (e.g. for the Sumatra-Andaman 2004 earth-
quake, the amplitudes are enhanced in the direction of the rupture
propagation). However, the W phase is not as affected as traditional
Rayleigh waves because of its high group velocity and long period.

Let us then assume an erroneous centroid location x̄, knowing,
for example, that this location is wrong mainly in some direc-
tion. This information is provided by the probability density ρx(x)
and the covariance Cx describing the uncertainty in the centroid
position x

ρx(x) = ((2π )N det Cx)−1/2 exp
(− 1

2 (x − x̄)t C−1
x (x − x̄)

)
. (11)

In practice, the 3 × 3 matrix Cx carries the uncertainty in the cen-
troid location. Let also d = d(x) represent the relation between
the centroid position x and the corresponding predicted data vec-
tor d. We assume now that the mismodelling ρT(d|m) in eq. (2) is
entirely attributable to the centroid mislocation provided by ρx(x).
Using the Jacobian rule ρx(x) = ρT(d)| ∂d

∂x | (where | ∂d
∂x | is the Jaco-

bian determinant of the transformation d = d(x)), we can write the

mismodelling covariance as

CT =
∫

[d(x) − d̄] [d(x) − d̄]t ρx(x) dx, (12)

where d̄ = ∫
d(x) ρx(x) dx is the average data vector.

As a first attempt, we can estimate the centroid mislocation co-
variance CT by using the following approach. We first calculate a
preliminary source model m̄ by performing a WCMT inversion at
the centroid location x̄ and generate a random population of loca-
tions from ρx(x)(Cx being given as an input to describe the location
uncertainty). For the preliminary model m̄ and each of these loca-
tions xk , we can compute the predicted data d(xk). We then use the
second moment of this population as a proxy for the covariance

(CT)i j = 1

L

L∑
k=1

[di (xk) − d̄ i ][d j (xk) − d̄ j ], (13)

where L is the total number of locations which have been generated
randomly and d̄ i the empirical mean d̄ i = 1

L

∑L
k=1 di (xk).

On Fig. 8, this approach is illustrated with a synthetic example
where the location error is elongated in the north–south direction.
After calculating the synthetic data set using the actual source model
shown in green, we filter the waveforms in the 1–5 mHz frequency
passband. Since we focus here on the effect of the mismodelling
(i.e. considering only ρT(d|m) and neglecting ρD(d)), we use the
synthetic data set without adding background noise to the seismo-
grams. As a result of the centroid position uncertainty, the source is
mislocated 0.6◦ to the south of the actual centroid. The red mecha-
nism is obtained by performing a WCMT inversion which neglects
the centroid mislocation information [i.e. ignoring CT in eq. (4)].
This solution is clearly affected by the mislocation of the centroid.
This source model is then used to calculate several data sets corre-
sponding to 1000 random locations drawn from a probability density
reflecting the centroid location error (which in this case is larger in
the north–south direction). We then use eq. (13) to calculate CT

from this population of data sets. The WCMT solution obtained by
including the resulting covariance is shown in orange on Fig. 8. The
match between the WCMT solution and the actual source model is
indeed clearly improved when the centroid mislocation is taken into
account. This approach is time-consuming but it highlights the im-
provements that can be achieved by incorporating the mismodelling
information into the inverse problem. As presented in Section 2, the
solution of the inverse problem is the posterior probability density
σ M(m) given by eq. (3)–(5). As soon as the covariance CD does
not reflect the true observational errors (Cd) and the true modelling
uncertainties (CT), the solution σ M(m) is affected and the most
probable model m̃ at the maximum of σ M(m) is biased.

Knowing how the moment tensor estimates can be improved by
considering the mislocation information, we can now seek a more
efficient way to calculate CT. In the vicinity of the centroid location
x̄, we can write up to the first order:

d(x) = d(x̄) + ∇d(x̄) (x − x̄). (14)

Since we are working at very long periods, the centroid mislocation
is generally small compared to seismic wavelengths being used
and d(x) is smooth in the neighbourhood of x̄. Thus, we can write
d̄ = d(x̄) and insert eq. (14) in eq. (12) to show

CT = [∇d(x̄)] Cx [∇d(x̄)]t , (15)

where Cx is the centroid position covariance in eq. (11) defined as

Cx =
∫

(x − x̄) (x − x̄)t ρx(x) dx. (16)
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Uncertainty estimations for source inversions 1249

Figure 8. Synthetic WCMT inversion incorporating the centroid mislocation information by using the mismodelling covariance CT. The data vector is setup
by generating a synthetic data set corresponding to the green focal mechanism (i.e. the actual source model) with a distribution of stations indicated by the blue
triangles. The WCMT inversion is performed by assuming a wrong centroid location (red star) which is shifted 0.6◦ to the south of the actual centroid location
(green star). The mismodelling covariance leading to the orange mechanism is computed empirically from eq. (13) using 1000 data sets corresponding to 1000
random centroid locations (black dots). This distribution of location is drawn from a probability density ρx(x) of covariance Cx which is used to calculate the
mismodelling covariance in eq. (15) associated with the blue mechanism. The WCMT solution resulting from the standard W phase algorithm which neglects
the centroid mislocation is shown for comparison in red.

In this section, it is implicitly assumed that the modelling error
can be adequately described by a Gaussian probability density (i.e.
ρT(d|m) in eq. (2) is Gaussian). This hypothesis is not supported
in the general case, especially if the data model relationship is non-
linear. However, since we can reasonably consider the input location
uncertainty ρx(x) to be Gaussian, this assumption is valid here as
long as eq. (14) stands in the vicinity of the centroid location.

In practice, the data gradient ∇d(x̄) can be estimated by
using pre-computed derivatives of G with respect to the source
location x

[∇d(x̄)]i j = ∂Gik

∂x j
(x̄) m̄k, (17)

where m̄ is the moment tensor obtained after performing a prelimi-
nary WCMT inversion at the centroid location x̄.

The blue mechanism in Fig. 8 shows the results obtained by using
eq. (15) for CT in the previous Californian synthetic application. The
resulting WCMT solution is very similar to the actual source model.
A good match is also observed using the empirical covariance in eq.
(13), but the computation of CT using eq. (15) is more efficient.

6 A P P L I C AT I O N

To understand the centroid mislocation described by the covariance
Cx in the calculation of the mismodelling covariance CT, we com-
pared the location estimates coming from different catalogues. Du-
putel et al. (2012) recently applied the WCMT algorithm to the set
of Mw ≥ 6.5 earthquakes between 1990 and 2010. Fig. 9(a) shows

the differences between the resulting centroid location and the ones
from Harvard/Global CMT (GCMT) catalogue (Dziewonski 1982;
Ekström & Nettles 2006). We note that GCMT and WCMT solu-
tions are often separated by several tens of kilometres. As discussed
by Duputel et al. (2012), the spatial resolution of the centroid es-
timated from the W phase algorithm is limited because it involves
very long wavelengths. Important location uncertainties can also
be observed using shorter periods data. Fig. 9(b) shows the dif-
ferences between the USGS hypocentre (for brevity we will refer
here to the USGS hypocentre as the PDE) and the GCMT centroid
location for 5.5 ≤ Mw ≤ 6.0 events. Since these are small earth-
quakes, the distance between the hypocentre and the centroid loca-
tion should not exceed 10 km, which is much smaller than what is
observed here. This is obviously the consequence of the uncertainty
on hypocentre and centroid locations. The PDE location estimates
is based on body wave arrivals which are generally affected by un-
modelled shallow heterogeneities. On the other hand, as discussed
by Hjörleifsdóttir & Ekström (2010), the GCMT centroid location
can be biased by the Earth model used to calculate the Green’s
functions in certain regions of the world (e.g. North and South
America).

Given the variability of the centroid location discussed earlier,
it is desirable to introduce the location uncertainty in CMT in-
verse problems. As a first application, we performed WCMT in-
versions by fixing the centroid to the hypocentre and account for
the additional mislocation due to the distance between the rup-
ture initiation and the centroid position. The aim here is to have
robust moment tensor estimates regardless of the actual centroid
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Figure 9. Errors in the centroid location. The difference between WCMT
and GCMT centroid locations for Mw ≥ 6.5 earthquakes between 1990
and 2010 (771 events) is shown in (a) and the difference between USGS
epicentre (PDE) and GCMT centroids for 5.0 ≤ Mw ≤ 6.0 earthquakes
between 2009 and 2010 (705 events) is shown in (b). The arrows point from
the WCMT centroid in (a) and from the PDE location in (b) to the GCMT
centroid position.

location. We then focus on the 2009 Vanuatu earthquake sequence
for which a significant part of the mismodelling can be attributed
to the large amplitude disturbances caused by preceding events.
We finally discuss the 2011 Tohoku-oki Mw = 9.0 earthquake
and in particular the uncertainty on the fault dip and the seis-
mic moment associated with the centroid location variability. As
is done previously during the synthetic experiments, the data are
filtered in the 1–5 mHz passband after proper instrument response
correction.

6.1 Inversions with the centroid fixed at the preliminary
hypocentre

To reduce the perturbations due to the source mislocation, most
applications attempt to search for an optimum point source location
in addition to moment tensor elements. The centroid position is
generally obtained by minimizing a quadratic misfit function which
in practice can be performed using various optimization methods
such as the steepest descent algorithm (e.g. Dziewonski et al. 1981)
or a simple grid search such as in the WCMT algorithm. Perform-
ing a spatial grid-search is roughly equivalent to assume a uniform
probability density to describe the location uncertainty in the region

where the centroid is explored. As discussed earlier, we know how-
ever that the centroid location inverted following such procedures
can produce significant errors.

In this section, we follow an alternative strategy: the centroid
position is fixed to the PDE location and we introduce a mismod-
elling covariance CT to describe the centroid location uncertainty
as detailed in Section 5. This approach is of particular interest for
warning purposes since our primary goal here is to have better mo-
ment tensor estimates regardless of the precise centroid location.
As a matter of fact, it has direct implications in grid-based realtime
determination of moment tensors (e.g. GRiD MT, Tsuruoka et al.
2009). In this particular context, taking into account the modelling
error due to the centroid mislocation should allow a dramatic de-
crease in the number of point source to be inverted continuously
and simultaneously.

In this section, we assume an isotropic horizontal centroid loca-
tion uncertainty (i.e. Cx = σ xI): we use a standard deviation σ x =
1.0◦ which is appropriate given the distance between the PDE and
the centroid location for large earthquakes. The average distance
between PDE and WCMT centroid for Mw ≥ 8.0 earthquakes be-
tween 1990 and 2010 is about 0.8◦ (the same value is obtained for
the standard deviation between PDE and GCMT locations).

6.1.1 2001 Peru earthquake (Mw = 8.4)

The GCMT solution for this event is shown in green on Fig. 10.
We keep the centroid fixed at the PDE location and perform two
WCMT inversions with and without incorporating realistic error
analyses. This event is actually quite challenging for this purpose
because of a large distance of 150 km between the PDE and the
GCMT centroid. This is caused by an unidirectional propagation of
the rupture toward the southeast with a significant slip away from
the epicentre (Ruegg et al. 2001; Giovanni et al. 2002).

The WCMT solution obtained without any formal error analysis
(i.e. neglecting CT and assuming Cd = σ 2I) is shown in red on
Fig. 10. Although the magnitude is not much affected, the result-
ing mechanism significantly differs from GCMT as a consequence
of the large distance between the PDE and the centroid location.
Moreover, as observed in the synthetic test shown on Fig. 4, the
associated posterior uncertainty is clearly under-estimated.

On the contrary, the solution presented in blue on Fig. 10 shows a
pretty good match to the GCMT solution and to the WCMT solution
proposed by Duputel et al. (2012) with more realistic estimates of
the posterior error on the source model parameters. This solution is
obtained by taking into account the block diagonal Cd incorporating
noise level measurement per-trace and off-diagonal terms as well
as the mismodelling covariance CT associated with the centroid
location uncertainty. This shows that even if we assume a point
source shifted more than 150 km away from the centroid location,
the resulting moment tensor is well resolved with a realistic estimate
of its uncertainty.

6.1.2 2001 Kokoxili earthquake (Mw = 7.8)

The 2001 Kokoxili earthquake is a continental strike-slip earth-
quake associated with a mostly unidirectional rupture propaga-
tion along a long fault of at least 400 km with a significant slip
eastward of the hypocentre (Tocheport et al. 2006). This event
is interesting in the present context because of the large dis-
tance of about 200 km, between the PDE and the centroid loca-
tion, as shown in Fig. 11. As for the 2001 Peru earthquake, the
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Figure 10. W phase source inversion results for the 2001 Peru earthquake. The GCMT solution for this earthquake is shown in green The WCMT solutions
are shown on the map and detailed on the right with the associated posterior uncertainties. The inversions are performed with a source location fixed at the
PDE (red star) which is shifted 150 km to the northeast of the GCMT centroid (green star). The WCMT solution obtained assuming Cd = σ 2I while neglecting
CT is shown in red. The WCMT solution presented in blue is obtained by combining the block diagonal Cd in eq. (9) with the mismodelling covariance CT of
eq. (15). The black dots shown on the map are drawn randomly from the probability density ρx(x) describing the centroid location uncertainty associated with
the covariance Cx used in the calculation of CT. The distribution of used stations is indicated by the blue triangles on the globe.

Figure 11. W phase source inversion results for the 2001 Kokoxili earthquake. The GCMT solution for this earthquake is shown in green. The WCMT solutions
are shown on the map and detailed on the right with the associated posterior uncertainties. The inversions are performed with a source location fixed at the
PDE (red star) which is shifted 214 km to the northeast of the GCMT centroid (green star). The WCMT solution obtained assuming Cd = σ 2I while neglecting
CT is shown in red. The WCMT solution presented in blue is obtained by combining the block diagonal Cd in eq. (9) with the mismodelling covariance CT of
eq. (15). The black dots shown on the map are drawn randomly from the probability density ρx(x) describing the centroid location uncertainty associated with
the covariance Cx used in the calculation of CT. The distribution of used stations is indicated by the blue triangles on the globe.

WCMT inversions are performed by fixing the centroid to the PDE
location with and without incorporating proper data covariance
CD.

The solution in red on Fig. 11 is obtained by neglecting CT and
assuming Cd = σ 2I. Because of the large difference between the

PDE location used in the inversion and the actual centroid position,
the resulting magnitude and mechanism are very different from the
GCMT solution with a clear underestimation of the associated pos-
terior uncertainty. The solution obtained automatically by Duputel
et al. (2012) (yellow) is also different from the GCMT solution as
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Figure 12. W phase source inversion results for the 2009 Vanuatu earthquake sequence. The GCMT solution for (1) the Mw = 7.6 earthquake at 22:03 UTC is
indicated in (a), (2) the WCMT solution obtained for the Mw = 7.8 event at 22:18 UTC is shown in (b) and (3) the WCMT solution obtained for the Mw = 7.4
earthquake at 23:13 UTC is presented in (c). In (d) are shown some examples of observed waveforms (black lines) and the corresponding synthetics (red lines)
computed from the GCMT solution in (a) and the WCMT solutions shown in (b), and (c). The station azimuth (φ) and epicentral distance (�) are indicated
relatively to the PDE location of (c). The W phase time windows are bounded by blue circles for the event (2) in (b) and yellow circles for the earthquake (3)
in (c).
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a consequence of the poor optimum location obtained after grid-
search.

If we include a more formal error analysis during the inversion by
combining the block diagonal Cd in eq. (9) with the mismodelling
covariance CT of eq. (15), the resulting WCMT solution shown in

blue on Fig. 11 shows a very good match to the GCMT solution.
We note also that the posterior uncertainty obtained for this event
is larger than the one obtained for the 2001 Peru earthquake. This
is consistent with the smaller signal-to-noise ratio for the 2001
Kokoxili event because of its smaller magnitude (Mw = 7.8).

Figure 13. W phase source inversion results for Mw ≥ 7.0 disturbed events of the 2009 Vanuatu earthquake sequence. The solution obtained for the second
event (2) of this sequence at 22:18 UTC is shown in (a), and the one obtained for the third event (3) occurring at 23:13 UTC is presented in (b). The
GCMT solution for these earthquakes are shown in green. The WCMT solutions are shown on the map and detailed on the right with the associated posterior
uncertainties. The inversions are performed with source locations fixed at the PDE (red star) which are shifted respectively 83 km in (a) and 14 km in (b) to the
northeast of the GCMT centroid (green star). The WCMT solutions obtained assuming Cd = σ 2I while neglecting CT are shown in red. The WCMT solutions
presented in blue and yellow are obtained by including a more formal error analysis during the inversion. It includes the covariance CT of eq. (15) and a block
diagonal covariance Cd as described in the main text. The black dots shown on the maps are drawn randomly from the probability density ρx(x) describing the
centroid location uncertainties associated with the covariance Cx used in the calculation of CT. The distributions of used stations are indicated for both event
by the blue triangles on the globes.

C© 2012 The Authors, GJI, 190, 1243–1256

Geophysical Journal International C© 2012 RAS

zac
Typewritten Text
(reprint)



1254 Z. Duputel et al.

6.2 Some unusual earthquakes

6.2.1 2009 Vanuatu earthquake sequence

The 2009 October 7 Vanuatu earthquake sequence consisted of
three Mw ≥ 7.0 events occurring in less than 5 hr. Due to the
short interval between the three events, the W phase waveforms
of the second and third earthquakes are contaminated by the large
amplitude disturbances caused by earlier events and the standard
WCMT inversion does not produce reliable results.

To cope with this situation, we can remove the perturbation
caused by earlier events by subtracting the corresponding synthet-
ics from the data in the W phase time window. As discussed by
Duputel et al. (2012), this approach is quite straightforward be-
cause we run the WCMT algorithm for the disturbed event as an
usual earthquake but using the residual traces instead of the original
data vector. However, the uncertainty in the resulting solution may
be increased since the data misfit associated with the disturbing
event source model is added to the background noise level.

We follow here the procedure described earlier by including a
formal error analysis during the inversion. As done in Section 6.1,
the centroid location is fixed to the PDE location and we use a mis-
modelling covariance CT associated with the source mislocation as
written in eq. (15). We also include a block diagonal covariance
with a form similar to Cd in eq. (9) but with different diagonal
elements. We first compute a solution for the disturbed event con-
sidering Cd = σ 2I and the residual traces as the data vector. We then
use the misfit at each station n as a proxy to determine the diagonal
elements σ n

d . The new form of CD used here therefore incorporates
(i) the mismodelling due to the centroid mislocation (by using CT),
(ii) the background noise level and uncorrected perturbations of
earlier events (by including the diagonal elements σ n

d ) and (iii) the
data oversampling (by considering the decaying exponential in Cd).

This approach is illustrated in Fig. 12 for the 2009 October 7
Vanuatu earthquakes. This sequence began with (1) a Mw = 7.6
earthquake occurring at 22:03 UTC followed 15 min later by (2) a
Mw = 7.8 earthquake and (3) a Mw = 7.4 event at 23:13 UTC. The
solution for the Mw = 7.8 earthquake (2) is shown in Fig. 12(b)
assuming the GCMT model of the Mw = 7.6 event (1) shown in
Fig. 12(a) to compute the synthetics which are subtracted from the
data. We then assess the moment tensor of the Mw = 7.4 earthquake
(3) shown in Fig. 12(c) after removing the perturbations of the
former (1) and (2) events.

The WCMT solutions shown in Figs 12(b) and (c) incorporates
the full covariance CD. As shown in Fig. 12(d), there is a very
good match between data and waveforms predicted from these point
sources. In Fig. 13, they are compared with GCMT and the WCMT
solutions obtained by neglecting CT and assuming Cd = σ 2I. On
top of having more robust estimates of the posterior uncertainty,
taking a more formal error analysis during the inversion allows us
to improve the solutions themselves, in particular, by taking into
account the additional data error due to the misfit associated with
former disturbing events.

6.2.2 2011 Tohoku-oki earthquake (Mw = 9.0)

The Tohoku-oki earthquake (Mw = 9.0) is the largest event dur-
ing the three years since the W phase algorithm was developped.
Thus, it is of particular interest to evaluate the benefit of incorpo-
rating realistic error analysis in WCMT inversions. As discussed in
Duputel et al. (2011), although the different techniques (e.g.
WCMT, GCMT, USGS CMT) provided quite similar solutions in
real-time or in post-mortem mode, Mw estimates range from 8.8 to
9.1, and fault dip values are distributed between 10◦ and 20◦, de-
pending on the assumed initial depth. We explore here the possibility

Figure 14. W phase source inversion results for the 2011 Tohoku-oki earthquake. The GCMT solution for this earthquake is shown in green and the WCMT
solution obtained in Duputel et al. (2011) after spacial grid-search using an optimum low-noise data set is presented in yellow. The WCMT solutions obtained
in this study are shown in red and blue on the map and detailed on the right with the associated posterior uncertainties. The inversions are performed with a
source location fixed at the GCMT centroid (green star). The WCMT solution obtained assuming Cd = σ 2I while neglecting CT is shown in red. The WCMT
solution presented in blue is obtained by combining the block diagonal Cd in eq. (9) with the mismodelling covariance CT of eq. (15). The black dots shown
on the map are drawn randomly from the probability density ρx(x) describing the centroid location uncertainty associated with the covariance Cx used in the
calculation of CT. The distribution of used stations is indicated by the blue triangles on the globe.
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of narrowing and assessing this uncertainty by including the full co-
variance matrix CD during the inversion.

The solution obtained in Duputel et al. (2011) for an optimum
low-noise data set is shown in yellow on Fig. 14 and the GCMT
solution is shown for comparison in green. Although the two mech-
anisms are similar we note that the magnitudes differ and that the
GCMT centroid is shifted to the south of the WCMT optimum loca-
tion. The solution shown in red on Fig. 14 is obtained if we perform
a WCMT inversion with a source location fixed at the GCMT cen-
troid. Although it does not diverge from the GCMT solution and
WCMT solution of Duputel et al. (2011), we note that the mecha-
nisms have a different orientation and that the magnitude obtained
here is slightly smaller than the GCMT one. We interpret this vari-
ability in point source solutions as the consequence of the large
fault dimension and of the associated uncertainty in the centroid
location. Moreover, as shown in Fig. 14, this uncertainty is clearly
underestimated if we assume Cd = σ 2I and neglect CT.

To improve these estimates, we introduce a covariance Cx reflect-
ing the centroid location uncertainty along the fault with standard
deviations of 140 km along strike, 70 km along dip and 5 km in

Figure 15. Posterior uncertainty on the W phase source inversion results
for the 2011 Tohoku-oki earthquake. 3000 source models are randomly
generated from the posterior Gaussian. The moment magnitude distribution
of this population is shown at the top of the figure and the shallow dip
histogram is shown below.

depth (cf. black dots in Fig. 14). The associated mismodelling co-
variance CT is then calculated using eq. (15). Fig. 14 shows the
results obtained if we still assume the GCMT centroid location but
incorporate CT and Cd of eq. (9). The resulting mechanism is simi-
lar to GCMT and to the WCMT solution from Duputel et al. (2011).
In terms of magnitude, the value Mw = 9.05 obtained in this study is
between Mw = 9.02 from Duputel et al. (2011) and the GCMT es-
timate Mw = 9.08. The histograms on Fig. 15 gives the uncertainty
we have on Mw and on the shallow fault dip. Reasonable esti-
mates of Mw range from 9.0 to 9.1 with dip variations between 10◦

and 12◦.

7 C O N C LU S I O N

We advocate performing a more formal error analysis in seismic
source inversion problems. In this work, we assume Gaussian initial
probability densities such that the data uncertainty can be carried by
the covariance matrix CD which should be included into the error
propagation analysis. We identify three ingredients to be incorpo-
rated in CD to have an accurate description of input uncertainties.
First, there is the noise level which we can measure for each data
trace. It forms the non-uniform diagonal of the observational error
covariance Cd. Secondly, we must include the non-diagonal terms
in Cd due to the interdependence of observational errors. Finally
we must account for the modelling error which can significantly
contribute to errors in the solution.

Although the approach presented here can be applied to much
more general inverse problems, we focus on CMT inversion studies
based on long period seismological observations. In this perspec-
tive, we incorporate a more formal error analysis into the W-phase
source inversion algorithm. The forward problem being linear at a
given centroid location, the posterior uncertainty on CMT param-
eters can be modelled by Gaussian distributions (since we assume
Gaussian prior probability densities). Given the long period char-
acter of the W phase, the observational error is mostly related to
the background seismic noise which steadily grows with period.
Moreover, we cannot neglect the interdependence of observational
errors since the data traces are heavily oversampled. To account for
the resulting strong correlation between neighbour data samples,
we incorporate non-diagonal terms in Cd by considering a decay-
ing exponential characterized by a correlation duration chosen as
the shortest period content after filtering (e.g. 
200 s). Concern-
ing the modelling error, we consider the case of the mismodelling
associated with the mislocation of the centroid position. We also
considered the amplitude disturbances caused by preceding events
during the 2009 Vanuatu earthquake sequence.

The results obtained by performing W phase inversions on syn-
thetic and actual data sets show the importance of incorporating
realistic covariance components during CMT inversions. First, it
improves the error estimates on source model parameters. Second,
it improves the solution itself notably because using an accurate
covariance CD prevents over-fitting of the data traces. Other sources
of mismodelling which could be taken into account are the source
finiteness, the source complexity for very large earthquakes or the
possibility of having an incorrect Earth model.
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